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Objectives
• Determine the electrochemical reaction kinetics of (La,Sr)(Co,Fe)O3 (LSCF)-based cathode.
• Develop novel cathode structures.  
• Determine the reactions between LSCF and zirconia.  Develop a strategy to avoid reactions between LSCF 

and zirconia and promote electrochemical reactions.  
• Determine the sensitivity of performance to sintering conditions.
• Demonstrate the feasibility of the LSCF composite cathode for use in high-performance solid oxide fuel 

cells (SOFCs) operating at low temperature.
• Determine the structural stability at operating temperature.

Approach
• Utilize idealized cathode structure to study the reaction pathway and rate-limiting steps for LSCF.
• Investigate LSCF-GDC (gadolinia-doped ceria) composite cathode structure that can help take advantage 

of the best properties of each material.
• Study the reaction of LSCF and zirconia and its effect on reaction kinetics.
• Determine the sensitivity of LSCF performance with respect to sintering conditions.
• Use GDC interfacial layer to prevent reaction, and study reaction kinetics at both idealized and practical 

interfaces. 

Accomplishments 
• Feasibility of LSCF-GDC cathode for high-performance SOFC has been well demonstrated.  For low-

temperature SOFC, a Ni-SDC (samarium-doped ceria) anode-supported cell with ceria electrolyte showed 
power density over 1 W/cm2 at 623°C.  Ni-YSZ anode-supported cell with yttria-doped zirconia (YSZ) 
electrolyte and a GDC interlayer showed 0.85 W/cm2 and 1.6 W/cm2 at 700°C and 800°C, respectively.

• For symmetric composite cathode samples, the LSCF-GDC cathode sample with GDC interlayer exhibited 
0.3 Ω/cm2 at 650°C, more than 50% lower resistance than a similarly fabricated LSCF-GDC sample 
without GDC interlayer.

• Basic kinetic data was obtained for LSCF using porous symmetric samples and the Adler-Lane-Steel 
(ALS) model.

• Screen printing processes have been developed for the interlayer and composite cathode for scale-up
in the future.

• Initial attempts at accelerated testing have been made for symmetric cells as well as a Ni-YSZ anode-
supported cell operating under elevated temperature.
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Future Directions
• In order to determine long-term (40,000 hours) stability and compatibility with other SOFC components in 

a cost-effective way, a protocol for accelerated testing needs to be developed.
• Process scale-up for the anode-supported cell is needed.

Introduction

Reduction of SOFC operating temperature plays 
a key role in reducing stack cost by allowing the use 
of low-cost metallic interconnects and new 
approaches to sealing.  Reported results for anode-
supported SOFCs show that cathode polarization 
resistance is one of the primary barriers to achieving 
high power densities at operating temperatures 
≤700°C.  For example, one prior study of thin-
electrolyte SOFCs showed that the low-current 
cathode interfacial resistance, RI, was 70-85% of the 
total cell resistance from 550-800°C [1].   Thus, there 
is considerable current interest in new cathodes, 
other than the standard (La,Sr)MnO3 (LSM)-YSZ 
compositions, for solid oxide fuel cells (SOFCs) that 
can operate at temperatures ≤700°C.

While the search for new cathode materials is 
valuable, there are known materials that show 
considerable promise for low-temperature 
applications.  In particular, compositions containing 
(La,Sr)(Co,Fe)O3 (LSCF) have been shown via 
impedance spectroscopy [2, 3, 4] to provide far 
superior performance compared to (La,Sr)MnO3 
(LSM) cathodes.  For example, low-current 
polarization resistances measured for LSCF-GDC 
cathodes on YSZ electrolytes are ≈0.3 Ωcm2 at 
600°C and ≈0.03 Ωcm2 at 700°C [3]. Despite these 
fundamental advantages, there has been little attempt 
to incorporate these cathodes into anode-supported 
SOFCs.  This is due in part to the potential 
difficulties with this material.  First, LSCF reacts 
readily with zirconia (at least for Co-containing 
compositions) to form resistive interfacial zirconate 
phases, severely limiting cathode performance [5].   
Second, processing temperatures are low enough that 
progressive sintering during longer-term cell 
operation may compromise long-term stability.  

Approach

This work includes a fundamental study of 
electrochemical reactions at controlled LSCF- YSZ 

interfaces.  Chemical reaction between LSCF and 
zirconia has been studied, and methods for mitigating 
the reactions, such as the inclusion of an interfacial 
ceria layer, have been investigated.  A novel cathode 
composite structure has been developed, and 
demonstrations of their high performance under low 
temperature were done using Ni-based anode-
supported cells.  As a means to test the long-term 
stability of porous LSCF-based structures under 
SOFC operating conditions, initial attempts have 
been made at accelerated testing of symmetric cells 
as well as anode-supported cells under elevated 
temperature.

Results

The LSCF reaction kinetics has been studied 
using impedance arc from electrochemical 
impedance spectroscopy (EIS) characterization of 
symmetric half-cells.  The half-cells of LSCF with 
thickness in the range of 30 µm were screen printed 
on both sides of bulk single-crystal YSZ electrolyte.  
The ALS model was used to fit the data, taking into 
account that for a mixed ionic conductor such as 
LSCF, the reaction zone is extended beyond three-
phase boundaries.  In this case, with an infinitely 
thick layer boundary condition, chemical resistance 
is expressed as follows:

Rchem = (RT/2F2)[τ/(1-ε)aCo
2D*k]1/2     [6]

Thick LSCF films should be appropriate for this 
model.  Figure 1 shows a typical experimental 
impedance arc from LSCF/YSZ samples with fittings 
based on the ALS model.  The fitting indicated a 
relatively good agreement with the ALS model, with 
estimated bulk diffusion coefficient and surface 
reactivity on the order of D* ~ 1x10-8 and k ~1x10-5, 
respectively, which are on the same order of 
magnitude as those of similar materials such as LSC.  
However, the accuracy of the fitting was limited by 
high-frequency arc interfering on the left hand side of 
the arc.  The source of high-frequency arc is unclear.
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The dependence of the interfacial impedance of 
LSCF-GDC symmetric cathodes on sintering 
temperature was studied, with sintering temperatures 
varying from 900°C to 1100°C.  The effect of 
sintering temperature is clear, with impedance 
decreasing as the sintering temperature increases, 
reaching minimum impedance of 0.6 Ω at 700°C and 
0.17 Ω at 800°C for sintering temperature of 1025-
1050°C.  While this value is an order of magnitude 
higher than that achieved in previous work [3], it is 
likely that the value is limited by LSCF-YSZ 
reaction as well as the microstructure not being 
optimized for active reaction surface area.  Further 
increases in sintering temperature increased the 
impedance, reaching ~3.5 Ωcm2 at 1100°C.  This is 
likely due to sintering of pore structure as well as 
further reaction between LSCF-YSZ.

Figure 2 compares the polarization resistance of 
LSCF-GDC cathode with and without GDC 
interlayer vs. inverse temperature from the 
symmetric half-cell samples.  The resistances 
correspond to 0.3 Ωcm2 and 0.7 Ωcm2 at 650°C with 
and without GDC, respectively, for the single 
interface case of typical cells.  The slope of the graph 
with inverse T for both of the samples are almost 
identical, indicating that the GDC interlayer does not 
have significant effect on the rate-limiting step.

Figure 3 shows the button cell performance at 
various temperatures for the Ni-YSZ anode-
supported cell with YSZ electrolyte / GDC interlayer 

/ LSCF-GDC cathode.  The thicknesses of YSZ 
electrolyte and GDC interlayers are 8 µm and 3 µm, 
respectively.  Both the GDC layer and LSCF-GDC 
cathode were screen printed.  As shown in Figure 3 
(top), open circuit potentials (OCPs) are close to 
theoretical values corresponding to air on the cathode 
side and 3% H2O-H2 fuel on the anode side.  The 
maximum power densities at 800°C and 700°C are 
about 1.6 W/cm2 and 0.8 W/cm2, respectively 
(Figure 3, bottom).  AC impedance analysis results 
showed that at 800°C, the ohmic resistance is about 
0.13 Ωcm2, while the total electrode resistance 
including the anode and cathode is about 0.17 Ωcm2.  
At 700°C, they are 0.215 Ωcm2 and 0.26 Ωcm2, 
respectively.  In order to evaluate the performance of 
the cathode under lower temperature, Ni-SDC anode-
supported cells were used with SDC electrolyte and 
LSCF-GDC cathode.  An excellent power density of 
~1 W/cm2 was obtained at 623°C, indicating 
substantially better performance compared to the Ni-
YSZ supported cell with YSZ electrolyte shown 
above.  This and subsequent EIS tests on the Ni-SDC 
cells indicated that the cathode performance is not a 
limiting factor on the performance of the cells under 
operation temperature as low as 600°C.  In fact, the 
open circuit voltage at 623°C was only ~0.9 V, 
suggesting that even better performance is probable 
with LSCF-GDC cathode, if it were not due to the 
electronic conductivity of SDC.

Figure 1.  A Typical Experimental Arc from LSCF/YSZ 
Samples with Fittings Based on ALS Model

Figure 2.  Polarization Resistances of LSCF-GDC 
Cathode with and without GDC Interlayer vs. 
Inverse Temperature
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Conclusions

The feasibility of LSCF-GDC composite cathode 
for low-temperature, high-performance SOFCs has 
been amply demonstrated.  For further development, 
long-term stability and compatibility of the LSCF 
need to be verified, preferably via appropriate 
accelerated testing. 
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Figure 3.  (top) Performance of Ni-YSZ Anode-
Supported Cell with YSZ Electrolyte / GDC 
Interlayer / LSCF-GDC - Potential        
(bottom) Power Density Plot of the Same Cell


